aktuality v oblasti genetiky



5/6/2022  - Muž, kterému bylo transplantováno prasečí srdce, zemřel po detekci prasečího viru
4/26/2022  - V meteoritech byly nalezeny všechny čtyři klíčové stavební kameny DNA
4/22/2022  - Čeští vědci odhalili unikátní struktury v genetické informaci viru klíšťové encefalitidy
4/8/2022  - Šance na zpomalení stárnutí? Vědci omladili kožní buňky o 30 let
3/31/2022  - Početný tým vědců konečně dokončil dekódování posledních 8 % lidského genomu
3/24/2022  - Úprava genů pomocí metody CRISPR zvyšuje výnosy rýže a kukuřice až o 10 procent
3/22/2022  - Salát posilující kostní tkáň by mohl pomoci astronautům na Marsu udržet si lepší zdraví
3/10/2022  - Pacient, kterému bylo jako prvnímu na světě transplantováno prasečí srdce, po dvou měsících zemřel
2/18/2022  - V lidském genomu byl nalezen 106 milionů let starý virus.
1/3/2022  - Umělý život vytvořený v laboratoři je schopen růst a dělit se jako přírodní bakterie

Muž, kterému bylo transplantováno prasečí srdce, zemřel po detekci prasečího viru


K úmrtí prvního člověka, kterému bylo transplantováno srdce ze zvířete, možná přispěl prasečí virus.

David Bennett zemřel v březnu ve věku 57 let, dva měsíce po transplantaci. Bennett, který trpěl těžkým srdečním selháním, byl považován za příliš nemocného na to, aby dostal lidské srdce, a tak mu byl ze soucitu transplantován prasečí orgán. Na praseti, které orgán dodalo, bylo provedeno deset genetických změn, aby se zabránilo odmítnutí srdce, přičemž čtyři prasečí geny byly odstraněny a šest lidských genů přidáno.

Zpočátku se zdálo, že se Bennettovi daří dobře, nicméně lékaři, kteří stáli za transplantací, nyní odhalili, že se v týdnech před jeho smrtí pokoušeli léčit prasečí cytomegalovirovou infekci.

Transplantační chirurg Bartley Griffith z Marylandské univerzity oznámil přítomnost cytomegaloviru v přednášce pro Americkou transplantační společnost 20. dubna. "Začínáme se dozvídat, proč zemřel," řekl pro MIT Technology Review.

MIT Technology Review uvádí, že podle Griffitha mohla být příčinou selhání prasečího srdce virová infekce, nikoli Bennettův imunitní systém, který orgán odmítl. "Neexistuje žádný důkaz, že by virus způsobil infekci u pacienta nebo infikoval jiné tkáně či orgány než srdce," říká mluvčí Marylandské univerzity.

Cytomegaloviry jsou příbuzné herpes virům, které způsobují opary a pásový opar. Jakmile jsou zvířata infikována, virová DNA zůstává uvnitř některých buněk. Jejich imunitní systém obvykle udržuje virus pod kontrolou, ale pokud je zvíře oslabené, virus se může reaktivovat a způsobit další infekce.

Bennett by neměl proti prasečímu cytomegaloviru žádnou imunitu, což by viru dávalo šanci reaktivovat se a infikovat transplantované srdce. Podle Joachima Dennera ze Svobodné univerzity v Berlíně v Německu virus lidské buňky neinfikuje. Bennett také užíval imunosupresivní léky, které mohly zabránit jeho imunitnímu systému plně reagovat.

Virus byl poprvé zjištěn v krvi odebrané 20 dní po Bennettově transplantaci. Tým vyzkoušel různé způsoby léčby, včetně léku používaného k léčbě infekcí způsobených lidským cytomegalovirem, zvaného cidofovir, a zdálo se, že se Bennett zotavuje, než se jeho stav rychle zhoršil. Když Bennettův imunitní systém začal reagovat na virus, mohl vyvolat zánětlivou reakci známou jako cytokinová bouře, která poškodila srdce, říká Griffith.

V roce 2020 Denner a jeho kolegové zjistili, že paviáni nežijí tak dlouho, pokud se u nich po transplantaci prasečího srdce objeví infekce cytomegalovirem prasat. Nikdo však nemůže s jistotou říci, do jaké míry virus přispěl k Bennettově smrti, říká Denner. "Byl velmi, velmi nemocný."

Prasata chovaná za účelem poskytnutí orgánů jsou chována ve speciálních čistých zařízeních, aby se v nich nevyskytovaly patogeny. To, že se virus před transplantací nepodařilo odhalit, mohlo být způsobeno nedostatečnou citlivostí testů, říká Denner. Vyvinul citlivé testy na detekci prasečího cytomegaloviru, které jeho laboratoř použila v roce 2016 k detekci viru u prasat chovaných pro biomedicínský výzkum. Tyto testy byly pozitivní i u vzorků, které byly při testování v laboratořích v USA negativní.

"Testy, na které odkazuje výzkumník ve vašem článku, jsou experimentální [a] v době této transplantace nebyly našim chirurgům-vědcům k dispozici," říká mluvčí marylandské univerzity na otázku, zda tyto testy Griffithův tým použil.

Odhalit latentní infekce - kdy virová DNA leží v několika buňkách a žádné viry se nevytvářejí - je obtížnější než identifikovat aktivní infekce, ale lze to provést dvěma způsoby. Prvním je hledání virové DNA ve vzorcích krve nebo tkání. Druhým způsobem je hledání protilátek proti viru. Dennerova laboratoř používá obě metody. Není jasné, které testy byly provedeny před Bennettovou transplantací.

"Zdravé dárcovské prase použité pro xenotransplantaci bylo několikrát vyšetřeno na přítomnost patogenů. Bylo testováno těsně před odesláním do Marylandu a těsně před transplantací o několik dní později. Testování probíhalo podle protokolů, které byly schváleny americkým Úřadem pro kontrolu potravin a léčiv (FDA). V souvislosti s plány na budoucí klinické testy se vyvíjejí a ověřují sofistikovanější testovací techniky, aby se zajistilo, že tento virus nezůstane neodhalen," říká mluvčí Marylandu.

Pokud virus přispěl k Bennettově smrti, a ne proto, že by jeho imunitní systém orgán odmítl, výsledky Dennerovy studie na paviánech naznačují, že ostatní příjemci transplantátu mohou žít déle, pokud dostanou srdce bez viru. Podle Dennera lze zaručit, že prasata nebudou obsahovat prasečí cytomegalovirus, pokud je odstavíme 24 hodin po narození.

Společnost Revivicor, dceřiná společnost United Therapeutics, vyvinula prase, které stálo za Bennettovou transplantací, a k detekci viru se nevyjádřila. Neexistují žádné důkazy o tom, že by se společnosti dopustily pochybení. Ani jedna z firem neodpověděla na žádost časopisu New Scientist o komentář před zveřejněním.

Zdroj: New Scientist
zpět

V meteoritech byly nalezeny všechny čtyři klíčové stavební kameny DNA


Ve vzorcích meteoritů jsme nyní objevili všechny čtyři stavební kameny DNA, což naznačuje, že vesmírné horniny mohly tyto sloučeniny dopravit na Zemi a přispět tak ke vzniku života.

Všechny čtyři klíčové stavební kameny DNA byly nyní nalezeny v meteoritech, což naznačuje, že vesmírné horniny mohly tyto sloučeniny dopravit na Zemi a přispět tak ke vzniku života.

DNA má spirálovitou schodišťovou strukturu, v níž každý stupeň tvoří dvojice molekul zvaných nukleobáze. Dvě z těchto čtyř nukleobází - adenin a guanin, které patří do skupiny chemických sloučenin nazývaných puriny - byly poprvé zjištěny v meteoritech v 60. letech 20. století.

Nyní Yasuhiro Oba z japonské univerzity Hokkaido a jeho kolegové objevili v několika meteoritech zbývající dvě nukleobáze DNA, cytosin a thymin, známé jako pyrimidiny.

Tým nalezl tyto nukleobáze v přibližně 2 gramech horniny ze tří meteoritů: Murchison, Murray a Tagish Lake. Předpokládá se, že meteority Murchison a Murray, které dopadly na Zemi v polovině 20. století, pocházejí z doby před nejméně 5 miliardami let. Meteorit Tagish Lake se stejně jako Země pravděpodobně zformoval před 4,5 miliardami let a na naši planetu dopadl zhruba před dvaceti lety.

Oba týmy rozemlely každý vzorek horniny na prášek, který přidaly do vody, a poté pomocí ultrazvukových vln rozdělily částice do vrstev. Poté skupina použila hmotnostní spektrometrii k identifikaci sloučenin podle jejich molekulové hmotnosti.

"Existoval důvod, proč cytosin a thymin v meteoritech nebyly až dosud nikdy zaznamenány ... tyto sloučeniny se vyskytují ve velmi stopovém množství, což vyžadovalo metodu se schopností měřit tak malá množství," říká Michael Callahan z Boise State University v Idahu.

Mohly tyto sloučeniny pocházet z kontaminace? V půdě v okolí místa dopadu meteoritu Murchison v Austrálii se relativní množství nukleobází podstatně liší od množství v meteoritu, což naznačuje, že nukleobáze do horniny přišly z vesmíru.

"Jsem přesvědčen, že tato data neodrážejí pozemskou kontaminaci," říká Bradley De Gregorio z Naval Research Laboratory ve Washingtonu.

Horniny obsahující nukleobáze mohly na Zemi dopadnout před 4 až 3,8 miliardami let, v období pozdního těžkého bombardování. To předchází nejstarším známým nesporným fosiliím mikrobů, které jsou staré asi 3,4 miliardy let.

Oba týmy také zjistily vyšší koncentraci nukleobází v půdě, na kterou meteorit Murchison dopadl, než v samotném meteoritu.

"Pokud jsou tyto výsledky reprezentativní pro typické koncentrace pyrimidinů v meteoritech," říká Callahan, "pak by [nukleobáze přítomné na] Zemi byly pravděpodobně zodpovědné za vznik genetického materiálu spíše než vstupy z mimozemské dodávky."

Zdroj: New Scientist
zpět

Čeští vědci odhalili unikátní struktury v genetické informaci viru klíšťové encefalitidy


Speciální struktury, nazývané guaninové kvadruplexy (G4), objevil tým českých výzkumníků v genetické informaci viru klíšťové encefalitidy. Odborníci zjistili, že tyto struktury hrají důležitou roli při množení viru a je možné na ně cílit při hledání nových antivirotik. Během testování potenciálních chemických látek, které rozpoznávají tyto G4 struktury, navíc vědci našli slibné molekuly s vysokým antivirovým účinkem. Tyto látky mohou v budoucnu rozšířit repertoár možných léčiv. Virus klíšťové encefalitidy způsobuje závažné onemocnění nervové soustavy. V posledních letech celosvětově vzrůstá počet případů, a to i přesto, že je k dispozici účinné očkování. V případě nákazy však zatím právě nejsou dostupná žádná vhodná antivirotika, proto jsou pacienti odkázáni pouze na podpůrnou léčbu.Vědci identifikovali několik molekul, které vykazovaly antivirový účinek. V budoucnu by se mohly stát možnými kandidáty pro vývoj nové generace protivirových léčiv.Na výzkumu tzv. G4 u viru klíšťové encefalitidy spolupracovali biofyzici a virologové z Biofyzikálního ústavu Akademie věd ČR, brněnského Výzkumného ústavu veterinárního lékařství, českobudějovického Parazitologického ústavu Biologického centra AV ČR, Ústavu organické chemie a biochemie AV ČR, Přírodovědecké fakulty Masarykovy univerzity (MU) v Brně a České zemědělské univerzity (ČZU) v Praze. „Struktura guaninových kvadruplexů byla známá už u některých jiných virů. U viru klíšťové encefalitidy ale ještě nikým popsána nebyla. Proto jsme se rozhodli prozkoumat genom tohoto viru a zjistit, zda se tam guaninové kvadruplexy vyskytují a jakou mají strukturu. Zaměřili jsme se i na to, jak mohou ovlivňovat virovou infekci v hostitelských buňkách,“ přiblížil hlavní autor studie Jiří Holoubek z Parazitologického ústavu Biologického centra AV ČR a Výzkumného ústavu veterinárního lékařství, který je rovněž doktorandem na Přírodovědecké fakultě MU. Je možné na ně cílit chemickými látkami Nalezení guaninových kvadruplexů v genomu viru klíšťové encefalitidy probíhalo ve spolupráci s týmem biofyziků. „Pomocí bioinformatických metod jsme vytipovali, na kterých místech genomu se tyto struktury vytvářejí, a charakterizovali jsme je. Na molekulární úrovni in vitro, tedy ve zkumavce, jsme také sledovali aktivitu molekul, které jsou schopné guaninové kvadruplexy rozpoznávat,“ uvedla Klára Bednářová z Biofyzikálního ústavu AV ČR, druhá hlavní autorka studie. Biologové pak výsledky ověřovali při reálné infekci v buňkách napadených živým virem. Ukázalo se, že G4 hrají klíčovou roli při množení viru v hostitelské buňce, dále že jejich struktura významně ovlivňuje životaschopnost a biologické vlastnosti viru a že je možné na ně cílit chemickými látkami, které zabrání virové infekci. Vědci identifikovali několik molekul, které vykazovaly antivirový účinek, a v budoucnu by se tak mohly stát možnými kandidáty pro vývoj nové generace protivirových léčiv.Studie vznikla v rámci řešení projektu financovaného Grantovou agenturou ČR, jehož garanty jsou Daniel Renčiuk (Biofyzikální ústav AV ČR) a Luděk Eyer (Výzkumný ústav veterinárního lékařství).

Zdroj: Aktuálně.CZ
zpět

Šance na zpomalení stárnutí? Vědci omladili kožní buňky o 30 let


Odborníkům z Univerzity v Cambridgi se povedlo omladit kožní buňky 53leté ženy do podoby, jakou mají buňky 23letého člověka. Doufají, že jejich poznatky budou v budoucnu využitelné pro omlazení buněk i dalších tělesných orgánů. Cílem britského výzkumu je vyvinout léčbu nemocí vázaných na přibývající věk, např. diabetu, nemocí srdce a neurologických poruch. Šéf výzkumu profesor Wolf Reik v rozhovoru se zpravodajskou stanicí BBC řekl, že doufá, že jednou bude možné stárnoucím lidem zachovat zdraví déle.
„O něčem takovém jsme snili. Z mnoha běžných potíží se s věkem stávají vážné nemoci a je úžasné přijít na to, jak lidem pomoci,“ nechal se slyšet. Doplnil, že jeho tým právě věří, že totéž se v budoucnu dokáže i s jinými tkáněmi v těle. Při tzv. zmlazování kůže byly použity postupy známé z výzkumu, který v roce 1996 vedl k narození naklonované ovce Dolly.

Studie ve velmi rané fázi.

Výsledek cambridgeského týmu byl zveřejněn v časopise eLife a Reik upozornil, že jde o výzkum ve velmi raném stadiu. Předtím, než bude moci být technologie přenesena z laboratoře na kliniku, je třeba překonat mnoho problémů. To, že se poprvé podařilo ukázat, že je omlazení kožních buněk možné, je ale podle něj důležitý krok vpřed.Výchozím bodem výzkumu byly poznatky z Roslinova institutu v Edinburghu, kde se v 90. letech podařilo naklonovat ovci z kožní buňky dospělého jedince. Původním cílem týmu z Roslinova institutu nebylo vytvářet klony zvířat nebo lidí, ale lidské embryonální kmenové buňky, které by mohly růst v určitých tkáních jako svaly, chrupavky či nervové buňky a nahradit vyčerpané orgány. Později technologii zjednodušil japonský vědec Šinja Jamanaka, laureát Nobelovy ceny za lékařství a fyziologii. Dokázal vytvořit indukovanou pluripotentní kmenovou buňku, která je připravená uměle a může z ní vzniknout v dospělém organismu jakákoli buňka. Jeho metoda se označuje jako IPS.Jak v případě při klonování Dolly, tak v případě IPS musí kmenové buňky narůst do buněk a tkání potřebných pro pacienta. Je to složitý proces a navzdory mnohaletému úsilí je využitelnost k léčbě nemocí velmi omezená.

Metoda IPS zvyšuje riziko rakoviny

Reikův tým použil techniku IPS na kožních buňkách 53leté ženy, přičemž zkrátil délku jejich pobytu v chemikálii z 50 na 12 dní. Člen týmu Dilgeet Gill řekl, že ho ohromilo, když zjistil, že se buňky nezměnily v embryonální kmenové buňky, ale „omládly“ tak, že vypadaly a chovaly se, jako by byly odebrány člověku starému 23 let.Proces nelze rychle zavádět na klinikách, protože metoda IPS zvyšuje riziko rakoviny. Reik řekl, že věří, že když je nyní zřejmé, že lze buňky omladit, může jeho skupina přijít na alternativní a bezpečnou technologii. „Konečným cílem je prodloužit lidem zdraví, ne život, takže lidé budou moci stárnout zdravěji,“ řekl.


Zdroj: Novinky.CZ
zpět

Početný tým vědců konečně dokončil dekódování posledních 8 % lidského genomu


Tým 99 vědců z celého světa dnes v odborném časopise Science zveřejnil kompletní podobu lidského genomu.

Tento průlom přichází téměř dvacet let poté, co projekt lidského genomu přišel s podobným tvrzením, když ignoroval úseky DNA, které byly tehdy považovány za nedůležité.

"Tato nová sekvence znamená, že jsme vstoupili na začátek nové etapy," říká neurogenetik Erich Jarvis, který je spoluautorem nového článku, v rozhovoru pro IE.

"Díky kompletním genomům si mohu začít klást nové biologické otázky, které dříve nebyly možné," dodává.

Průlom se připravoval desítky let

Nový soubor dat představuje mimořádně dlouhou sekvenci pouhých čtyř písmen - A, T, C a G -, která reprezentují čtyři molekuly kódující lidské geny.

Na rozdíl od genomu představeného v roce 2003 zahrnuje dnešní oznámení vysoce opakující se (ale zásadně důležité) oblasti genomu, které byly pro vědce v 90. letech a na počátku nového tisíciletí příliš obtížné na to, aby je rozebrali. Celý genom má více než tři miliardy písmen. To znamená, že kdyby byl vytištěn dvanáctibodovým písmem, váš genetický kód by se táhl od Houstonu až po Boston.

Průlom byl možný díky tomu, že vědci mají lepší technologie a dokonalejší znalosti genomiky než před dvaceti lety. Bylo také zapotřebí hodně spolupráce.

Vědci zdokonalili starší techniky

Téměř každá buňka v těle obsahuje celý genom člověka, zaznamenaný v přesné molekulární struktuře jeho DNA. Molekuly reprezentované písmeny A, T, C a G jsou uspořádány v sekvenci podél délky DNA. Kdybychom ji rozpletli a natáhli, DNA obsažená v jedné buňce by byla dlouhá zhruba osm stop. Takto ovšem DNA v našich buňkách neexistuje. Evoluce vedla živé organismy k objevení nejrůznějších inovativních způsobů, jak DNA složit do souboru tak malých balíčků, že se snadno vejdou do buněčného jádra.

Vědci čtou DNA tak, že ji rozřežou na kousky, které jsou dostatečně malé, aby je zvládla stávající technologie. Jedním z důvodů, proč se vědcům podařilo rozluštit kompletní genom až nyní, je to, že novější přístroje jsou schopny přečíst delší kousky než kdykoli předtím. Za ideálních podmínek dokáže nejmodernější stroj přečíst fragmenty DNA dlouhé několik set tisíc párů bází.

"DNA fyzicky prochází tímto pórem," říká Jarvis. "Jak prochází, pór odečítá jednotlivé páry bází."

Výzkumníci nečtou pouze jednu kopii DNA. Vypěstovali speciální buňky, které vytvářejí desítky identických kopií. Ty jsou rozsekány na fragmenty a čteny současně.

"Představte si, že váš telefon je velmi tenká destička vyplněná miliony pórů a DNA prochází všemi póry současně... chcete, aby stejná sekvence prošla někde 30 až 50krát," říká. "Pak chcete informace zprůměrovat."

Méně chyb pomohlo vědcům sestavit kompletní genom

Tato redundance umožňuje najít a opravit chyby. Nejenže chyby představují překážku pro vědce, kteří budou tento soubor dat používat ve svém dalším výzkumu. Chyby také přidávají další vrstvu obtíží pro výzkumníky, kteří mají za úkol znovu sestavit fragmenty do kompletního genomu.

Komerčně dostupné algoritmy jsou schopny získat správně zhruba 97 nebo 98 procent DNA sekvence, říká Jarvis, "ale ve zbývajících dvou procentech jsou stále chyby". Tyto chyby představují obrovskou výzvu, pokud se vyskytují ve vysoce repetitivních a "obtížně sekvenovatelných oblastech, kde je těžké odlišit jednu kopii od druhé".

Člen Jarvisovy laboratoře Giulio Formenti vyvinul algoritmus, který slouží jako "poslední kontrola přesnosti sekvence... k vyčištění posledních dvou procent," říká Jarvis.

Tento příspěvek - kromě mnoha dalších od výzkumníků z celého světa - umožnil těmto badatelům doplnit chybějící úseky genomu.

Vědci plánují sekvenovat mnohem více genomů

Tím však snaha o rozluštění a pochopení lidského genomu a jeho vlivu na organismy zdaleka nekončí. Bioinformatik Adam Phillippy, jeden z vedoucích projektu, říká, že "[p]rávě dokončit sekvenci lidského genomu bylo jako nasadit si nové brýle. Nyní, když vše jasně vidíme, jsme o krok blíže k pochopení toho, co to všechno znamená."

Díky tomu, že máme k dispozici jeden kompletní genom, jsme o velký krok blíže k personalizované medicíně, o které vědci mluví již desítky let. "V budoucnu, až si někdo nechá sekvenovat svůj genom, budeme schopni identifikovat všechny varianty v jeho DNA a využít tyto informace k lepšímu vedení jeho zdravotní péče," říká Phillippy.

Nový genom je také důležitým krokem pro výzkumníky, kteří potřebují kompletní genom z jiných důvodů. Jarvis spoluvede úsilí o sekvenování stovek kompletních genomů lidí z celého světa.

"Cílem je vytvořit co nejúplnější lidský genom, který by představoval mnohem větší část lidské rozmanitosti," říká.

Zdroj: Interesting Engineering
zpět

Úprava genů pomocí metody CRISPR zvyšuje výnosy rýže a kukuřice až o 10 procent


Podle nové studie by vypnutí určitého genu u kukuřice a rýže mohlo zvýšit výnosy zrna o 10 %, respektive o 8 %. Prozkoumáním podobných genů u jiných obilovin by se mohla zvýšit celosvětová produkce plodin.

Kukuřice a rýže jsou základními potravinami na celém světě a každá z nich má odlišnou historii pěstování pro masovou produkci. Předpokládá se, že kukuřice pochází z Mexika, zatímco rýže z Číny. Navzdory nezávislému vývoji těchto druhů si rostlinní biologové všimli, že mají některé velmi podobné znaky. Tomuto jevu se říká konvergentní evoluce.

Aby tyto podobnosti prozkoumali, Xiaohong Yang z Čínské zemědělské univerzity v Pekingu a její kolegové zmapovali genomy kukuřice (Zea mays L. ssp. mays) a rýže (Oryza sativa).

Nalezli 490 párů genů, které zřejmě plní analogické funkce v obou obilovinách. Z těchto dvojic vědci identifikovali dva geny - známé jako KRN2 u kukuřice a OsKRN2 u rýže -, které ovlivňují výnos jejich zrna. Pomocí genové editace CRISPR k vypnutí těchto genů dokázali zvýšit výnos zrna o 10 % u kukuřice a o 8 % u rýže. Tato čísla pocházejí z reálných experimentů na zemědělských polích.

"Jsou to vynikající výsledky," říká Yang, který doufá, že bude pokračovat ve zkoumání 490 párů genů, aby dále zlepšil produkci rýže a kukuřice.

"Jedná se o dva druhy, které jsou z ekonomického hlediska nejdůležitější," říká spoluautor Alisdair Fernie z Ústavu molekulární fyziologie rostlin Maxe Plancka v německé Postupimi. "Mají tak odlišnou historii domestikace s různými centry původu a do značné míry velmi odlišná stanoviště. Skutečnost, že ke konvergentní evoluci došlo u tolika genů, je fascinující."

Lepší pochopení genetické evoluce kukuřice a rýže by také mohlo vést k takzvaným domestikačním událostem de novo, říká Fernie, což je případ, kdy jsou domestikované geny vloženy do nedomestikovaných druhů, aby vznikly nové plodiny. Divoké plodiny jsou obecně odolnější vůči extrémním povětrnostním podmínkám a patogenům, ale obvykle mají nízký výnos.

"Pomocí CRISPR a editace genů bychom mohli vzít jen hrstku těchto domestikačních genů, například KRN2, a zavést je zpět do jejich příbuzných divokých druhů," říká. "Myšlenka je taková, že byste mohli vytvořit vysoce výnosné, ale odolné plodiny, což pro nás bude v budoucnu klíčové."

Zdroj: New Scientist
zpět

Salát posilující kostní tkáň by mohl pomoci astronautům na Marsu udržet si lepší zdraví


Konzumace hlávkového salátu obsahujícího hormon, který podporuje tvorbu kostí, by mohla pomoci astronautům před ztrátou kostní tkáně ve vesmíru - a dokonce by mohla pomoci léčit osteoporózu i na Zemi.

Hlávkový salát geneticky upravený tak, aby produkoval hormon podporující tvorbu kostí, by mohli jíst astronauti, aby byli na dlouhých misích zdravější.

Úbytek kostní hmoty neboli osteoporóza je častým problémem, když lidé tráví dlouhou dobu v mikrogravitaci ve vesmíru. Astronauti na Mezinárodní vesmírné stanici musí každý den alespoň 2 hodiny cvičit a užívat lék na udržování kostí, aby se tyto účinky omezily. Při delších misích, jako je například let člověka na Mars, by však mohly být zapotřebí silnější léky na tvorbu kostí, které by vyžadovaly injekce, což by zabíralo cenné místo v nákladu.

Kevin Yates z Kalifornské univerzity v Davisu a jeho kolegové použili půdní bakterii k přenosu genu, který produkuje variantu lidské verze parathormonu (PTH), do salátu. Stejná varianta se běžně používá jako lék stimulující tvorbu kostí. Výzkumníci prověřili řadu modifikovaných rostlin salátu a zjistili, že nejproduktivnější exempláře produkují 10 až 12 miligramů PTH na kilogram. Astronaut by mohl získat veškerý potřebný PTH, kdyby denně snědl 380 gramů salátu.

Yates a jeho tým se domnívají, že se jim podaří vylepšit první výsledky, které dnes prezentovali na konferenci Americké chemické společnosti Spring 2022 v kalifornském San Diegu. Doufají, že získávání léků z produktů vypěstovaných ze semen ve vesmíru by se mohlo stát normou pro budoucí mise.

"Jedná se o nový způsob myšlení a řešení problémů při průzkumu vesmíru," říká Yates. "V minulosti se obvykle jednalo o abiotická řešení - prostě jste věci zabalili a letěli s nimi nebo jste měli spotřební materiál, který jste spotřebovali a nechali si poslat další ze Země."

Yates také spekuluje, že by se salát mohl používat k léčbě osteoporózy i na Zemi, kde se s tímto onemocněním setkávají miliony lidí.

"V zásadě by mohl být [užitečný] z hlediska léčby osteoporózy," říká David Reid z Aberdeenské univerzity ve Velké Británii. Dodává však, že použití hormonu, který vytváří tkáň jako PTH, by mohlo být zbytečné. "Obvykle, pokud se nejedná o velmi hlubokou chorobu, si vystačíte spíše s jinými léky, které zabraňují odbourávání kostí, než s lékem, který kostní tkáň vytváří."

Zdroj: New Scientist
zpět

Pacient, kterému bylo jako prvnímu na světě transplantováno prasečí srdce, po dvou měsících zemřel


David Bennett, 57letý muž, který se stal celosvětově známým jako první člověk, jemuž bylo transplantováno geneticky modifikované prasečí srdce, podle tiskové zprávy zemřel v nemocnici, kde transplantaci podstoupil a kde se zotavoval.

Bennett byl poprvé přijat do Lékařského centra Marylandské univerzity (UMMC) v říjnu loňského roku s arytmií - nepravidelným bušením srdce, které se v jeho případě stalo životu nebezpečným. Lékaři ho napojili na mimotělní membránovou oxygenaci (ECMO), běžně známou jako přístroj pro umělé napojení srdce na plíce, aby ho udrželi při životě.

Byla mu doporučena transplantace srdce, ale vzhledem k tomu, že na čekací listině na transplantaci je více než 110 000 Američanů, Bennettův čas se krátil. Klinický tým navrhl alternativu, která dosud nebyla vyzkoušena. Xenotransplantaci.

Jedinou alternativou, kterou mohl pan Bennett využít, byla transplantace z druhu, který nebyl lidský, ale z geneticky modifikovaného prasete. Revivicor, biotechnologická společnost se sídlem ve Virginii, používá genetické inženýrství k vývoji linie prasat, u nichž je méně pravděpodobné, že je lidské tělo odmítne. Společnost totiž z prasete odstranila geny, které vyvolávají odpověď lidského imunitního systému, a poté do něj vložila geny lidského původu, které zvýšily přijatelnost transplantovaného orgánu.

Bylo to poprvé, kdy se taková transplantace uskutečnila na živém člověku. Již dříve (v říjnu) společnost úspěšně transplantovala ledvinu do zemřelého těla.

Panu Bennetovi byla vysvětlena všechna rizika zákroku a po získání zvláštního povolení od amerického Úřadu pro kontrolu potravin a léčiv byla transplantace dokončena v prvním lednovém týdnu.
Pacient se po operaci zotavoval.

Během několika dní po operaci byl zákrok označen za úspěšný, protože jeho tělo orgán neodmítlo. Transplantovaný orgán fungoval dobře bez jakýchkoli známek odmítnutí, uvedla nemocnice v tiskové zprávě. Bennett po operaci nebyl z nemocnice propuštěn a pokračoval v rekonvalescenční péči, která zahrnovala i pohybovou terapii, která mu pomáhala znovu nabrat sílu.

Bennett také mohl trávit čas se svou rodinou a během pobytu v nemocnici se dokonce věnoval běžným činnostem, jako je sledování Super Bowlu. Před několika dny se však Bennettův zdravotní stav začal zhoršovat a poté, co lékaři zjistili, že se už nezotaví, mu byla poskytnuta paliativní péče. Přesná příčina smrti nebyla dosud odhalena a očekává se, že vedení nemocnice provede důkladné zkoumání, aby se dozvědělo více, uvedl deník The New York Times.

"Jsme zdrceni ztrátou pana Bennetta. Ukázal se jako statečný a obětavý pacient, který bojoval až do konce. Jeho rodině vyjadřujeme upřímnou soustrast," uvedl Bartley Griffith, jeden z chirurgů, kteří zákrok v lednu provedli. "Stejně jako u každé první transplantační operace na světě, i tato vedla k cenným poznatkům, které, jak doufáme, poskytnou transplantačním chirurgům informace pro zlepšení výsledků a potenciální záchranu života budoucích pacientů."


Zdroj: Interesting Engineering
zpět

V lidském genomu byl nalezen 106 milionů let starý virus.


V našich genomech byly nalezeny pozůstatky viru, který sužoval naše savčí předky v době dinosaurů.
Přibližně před 106 miliony let se DNA viru nějakým způsobem integrovala do genomu jednoho z našich savčích předků. O dva miliony let později se něco podobného opakovalo se stejným druhem viru. Nyní byly dávné zbytky tohoto viru nalezeny uvnitř našich buněk.

"Tak trochu se skrývá v lidském genomu," říká Aris Katzourakis z Oxfordské univerzity.

Tyto dvě virové "fosilie" jsou jedny z nejstarších, které kdy byly objeveny, a možná dokonce nejstarší. Jsou také poměrně neobvyklé.

Naše genomy jsou posety "fosilními" viry, ale téměř všechny jsou retroviry, které aktivně vkládají kopie DNA svých RNA genů do genomů buněk, které infikují.

Pokud se tak stane v buňkách, z nichž vznikají spermie nebo vajíčka, může se tato DNA získaná z viru přenášet z generace na generaci. Časem virové geny zmutují a nakonec již nemohou dávat vznik infekčním virům. 5 až 10 % našeho genomu tvoří zbytky retrovirů.

Nově objevený virus místo toho patří do starobylé skupiny DNA virů zvaných Mavericks. Fosilní Mavericky byly nalezeny u různých živočichů, včetně ryb, obojživelníků a plazů, ale až dosud nebyly nikdy nalezeny u savců.

Vědci se domnívají, že tyto viry trápily savce od doby, kdy se tito živočichové poprvé vyvinuli přibližně před 180 miliony let v období jury, až do doby nejméně před 105 miliony let v období křídy, kdy došlo k jejich vnesení.
Poté zřejmě mavericky u savců vymizely z důvodů, které nejsou jasné. Mohly by ještě infikovat jiné živočichy, například ryby, ale dosud nebyly nalezeny žádné volně žijící viry Maverick.

"V našem genomu není tolik neretrovirálních virů," říká Katzourakis. "Toto je jediný DNA virus v lidském genomu, o kterém víme, a je to určitě nejstarší neretrovirální inzerce v našich genomech."

V lidském genomu se nachází jeden fosilní retrovirus, nazývaný ERV-L, který je považován za starší, ale odhady stáří se překrývají. "Je těžké s jistotou říci, zda je skutečně starší retrovirus ERV-L nebo tento Maverick, protože ke zjištění jejich stáří byly použity mírně odlišné metodiky," říká Katzourakis.

Existovaly by i ještě starší virové inzerce než tyto, ale jejich fosilní pozůstatky se mohly ztratit nebo zmutovat k nepoznání. Občas se však stane, že integrované virové geny jsou evolucí kooptovány a stanou se užitečnými pro své hostitele.


Zdroj: New Scientist
zpět

Umělý život vytvořený v laboratoři je schopen růst a dělit se jako přírodní bakterie


SYNTETICKÉ buňky vytvořené kombinací složek bakterie Mycoplasma s chemicky syntetizovaným genomem mohou růst a dělit se na buňky jednotného tvaru a velikosti, stejně jako většina přirozených bakteriálních buněk.

V roce 2016 vědci pod vedením Craiga Ventera z Institutu J. Craiga Ventera v kalifornském San Diegu oznámili, že vytvořili syntetické "minimální" buňky. Genom v každé buňce obsahoval pouze 473 klíčových genů považovaných za nezbytné pro život.

Buňky byly podle názvu institutu pojmenovány JCVI-syn3.0 a byly schopny růst a dělit se na agaru a vytvářet shluky buněk nazývané kolonie.


Při bližším zkoumání dělících se buněk si však Venter a jeho kolegové tehdy všimli, že se nedělí rovnoměrně a stejnoměrně a nevytvářejí identické dceřiné buňky, jak to dělá většina přírodních bakterií. Místo toho vytvářely dceřiné buňky bizarních tvarů a velikostí.

"[Tvůrci JCVI-syn3.0] vyhodili všechny části genomu, o kterých si mysleli, že nejsou nezbytné pro růst," říká Elizabeth Strychalski z amerického Národního institutu pro standardy a technologie. Podle ní se však ukázalo, že jejich definice toho, co je nezbytné pro růst, se týkala spíše toho, co je potřeba k vytvoření krásných kolonií rostoucích na agarové plotně, než toho, co je potřeba k vytvoření buněk, které se dělí rovnoměrně a jako živé.

Znovu zavedením různých genů do těchto syntetických bakteriálních buněk a následným sledováním, jak přidané geny ovlivňují růst buněk pod mikroskopem, se Strychalské a jejímu týmu podařilo určit sedm dalších genů, které jsou nutné k tomu, aby se buňky dělily rovnoměrně.
Když vědci přidali těchto sedm genů do JCVI-syn3.0 a vytvořili tak novou syntetickou buňku, zjistili, že to stačí k obnovení normálního, rovnoměrného dělení a růstu buněk.

Strychalski a její kolegové zjistili, že zatímco o dvou ze sedmi genů již bylo známo, že se podílejí na dělení buněk, pět z nich bylo dříve bez známé funkce. "Bylo to překvapivé," říká.

"Těchto pět genů bylo mimo rámec toho, co jsme dosud věděli," říká James Pelletier z Massachusettského technologického institutu, spoluautor studie.

"Minimální buňka má mnoho genů s neznámou funkcí, které sice netušíme, co dělají, ale jsou nezbytné pro život buňky - takže je to vzrušující oblast pro budoucí výzkum," říká.

"[Tento výzkum] je nesmírně důležitý pro pochopení toho, jak funguje život a jaké geny jsou potřebné pro spolehlivý provoz buněk," říká Drew Endy ze Stanfordovy univerzity v Kalifornii.

"Základní výzkum minimálních buněk nám pomáhá pochopit principy životních jevů a evoluční historii života," říká Kate Adamala z Minnesotské univerzity v Minneapolis. Minimální buňka je totiž dobrou analogií posledního univerzálního společného předka veškerého života na Zemi.

Nový objev nás podle ní také "přibližuje ke konstrukci plně definovaných, pochopitelných a kontrolovatelných" živých buněk. "Zbaveny složitosti přirozených živých systémů představují syntetické buňky nástroj pro základní výzkum i biotechnologie."

"Potenciál využití je obrovský, v zemědělství, výživě, biomedicíně a při nápravě životního prostředí," říká Jef Boeke z New York University. "Schopnost opravovat a zdokonalovat biologický kód, jako je tento, je zásadním krokem k tomu, abychom se k němu dostali."

Zdroj: New Scientist
zpět

o firmě

Advanced Genetics, s.r.o. poskytuje genetické testy se 100% spolehlivostí již od roku 2005. Dnes je největším poskytovatelem služeb komerční genetiky v ČR. Pracujeme s nejlepšími a nezávislými světovými laboratořemi. Největší garancí kvality jsou desítky tisíc klientů, o kterých jste nikdy neslyšeli.s

Terms of Use
Privacy Policy - GDPR
FAQ
Sitemap

aplikovaná genetika

Teoretické znalosti vědců a laboratorních genetiků, jsme dokázali dostat do praxe. Pro potřeby klientů děláme vše. Jako první jsme nabídli anonymní a dostupné DNA testy v nejvyšší kvalitě, kterou dosud nikdo nepřekonal. Jako první jsme přišli ve střední Evropě s analýzou nutriční genetiky. Vytvořili jsme první dlouhodobé programy personalizované výživy, které respektují i osobní genetiku. Bavíme obdarované zajímavými testy genů nevěry nebo dlouhověkosti. A zajišťujeme spokojenost klientů 100% kvalitou. Vyzkoušejte sami. Od prevence zdraví, až po složité životní situace - vždy profesionálně.

kontaktujte nás

  • telefon:
    603 466 620
  • e-mail:
    info@DNAtest.CZ
  • adresa:
    Politických vězňů 8
    110 00 Praha, CZ
    Czech Republic